Mark Huasong Meng (National University of Singapore), Qing Zhang (ByteDance), Guangshuai Xia (ByteDance), Yuwei Zheng (ByteDance), Yanjun Zhang (The University of Queensland), Guangdong Bai (The University of Queensland), Zhi Liu (ByteDance), Sin G. Teo (Agency for Science, Technology and Research), Jin Song Dong (National University of Singapore)

Ever since its genesis, Android has enabled apps to access data and services on mobile devices. This however involves a wide variety of user-unresettable identifiers (UUIs), e.g., the MAC address, which are associated with a device permanently. Given their privacy sensitivity, Android has tightened its UUI access policy since its version 10, in response to the increasingly strict privacy protection regulations around the world. Non-system apps are restricted from accessing them and are required to use user-resettable alternatives such as advertising IDs.

In this work, we conduct a systematic study on the effectiveness of the UUI safeguards on Android phones including both Android Open Source Project (AOSP) and Original Equipment Manufacturer (OEM) phones. To facilitate our large-scale study, we propose a set of analysis techniques that discover and assess UUI access channels. Our approach features a hybrid analysis that consists of static program analysis of Android Framework and forensic analysis of OS images to uncover access channels. These channels are then tested with differential analysis to identify weaknesses that open any attacking opportunity. We have conducted a vulnerability assessment on 13 popular phones of 9 major manufacturers, most of which are top-selling and installed with the recent Android versions. Our study reveals that UUI mishandling pervasively exists, evidenced by 51 unique vulnerabilities found (8 listed by CVE). Our work unveils the status quo of the UUI protection in Android phones, complementing the existing studies that mainly focus on apps' UUI harvesting behaviors. Our findings should raise an alert to phone manufacturers and would encourage policymakers to further extend the scope of regulations with device-level data protection.

View More Papers

Ethical Challenges in Blockchain Network Measurement Research

Yuzhe Tang (Syracuse University), Kai Li (San Diego State University), and Yibo Wang and Jiaqi Chen (Syracuse University)

Read More

PISE: Protocol Inference using Symbolic Execution and Automata Learning

Ron Marcovich, Orna Grumberg, Gabi Nakibly (Technion, Israel Institute of Technology)

Read More

Evaluations of Cyberattacks on Cooperative Control of Connected and...

H M Sabbir Ahmad (Boston University), Ehsan Sabouni (Boston University), Wei Xiao (Massachusetts Institute of Technology), Christos G. Cassandras (Boston University), Wenchao Li (Boston University)

Read More

Parakeet: Practical Key Transparency for End-to-End Encrypted Messaging

Harjasleen Malvai (UIUC/IC3), Lefteris Kokoris-Kogias (IST Austria), Alberto Sonnino (Mysten Labs), Esha Ghosh (Microsoft Research), Ercan Oztürk (Meta), Kevin Lewi (Meta), Sean Lawlor (Meta)

Read More