Jung-Woo Chang (University of California San Diego), Mojan Javaheripi (University of California San Diego), Seira Hidano (KDDI Research, Inc.), Farinaz Koushanfar (University of California San Diego)

Video compression plays a crucial role in video streaming and classification systems by maximizing the end-user quality of experience (QoE) at a given bandwidth budget.

In this paper, we conduct the first systematic study for adversarial attacks on deep learning-based video compression and downstream classification systems. Our attack framework, dubbed RoVISQ, manipulates the Rate-Distortion (R-D) relationship of a video compression model to achieve one or both of the following goals: (1) increasing the network bandwidth, (2) degrading the video quality for end-users. We further devise new objectives for targeted and untargeted attacks to a downstream video classification service. Finally, we design an input-invariant perturbation that universally disrupts video compression and classification systems in real time. Unlike previously proposed attacks on video classification, our adversarial perturbations are the first to withstand compression.

We empirically show the resilience of RoVISQ attacks against various defenses, i.e., adversarial training, video denoising, and JPEG compression. Our extensive experimental results on various video datasets show RoVISQ attacks deteriorate peak signal-to-noise ratio by up to 5.6dB and the bit-rate by up to ~ 2.4 times while achieving over 90% attack success rate on a downstream classifier. Our user study further demonstrates the effect of RoVISQ attacks on users’ QoE. We provide several example attacked videos used in our survey on https://sites.google.com/view/demo-of-rovisq/home.

View More Papers

ReScan: A Middleware Framework for Realistic and Robust Black-box...

Kostas Drakonakis (FORTH), Sotiris Ioannidis (Technical University of Crete), Jason Polakis (University of Illinois at Chicago)

Read More

CHKPLUG: Checking GDPR Compliance of WordPress Plugins via Cross-language...

Faysal Hossain Shezan (University of Virginia), Zihao Su (University of Virginia), Mingqing Kang (Johns Hopkins University), Nicholas Phair (University of Virginia), Patrick William Thomas (University of Virginia), Michelangelo van Dam (in2it), Yinzhi Cao (Johns Hopkins University), Yuan Tian (UCLA)

Read More

MyTEE: Own the Trusted Execution Environment on Embedded Devices

Seungkyun Han (Chungnam National University), Jinsoo Jang (Chungnam National University)

Read More

BARS: Local Robustness Certification for Deep Learning based Traffic...

Kai Wang (Tsinghua University), Zhiliang Wang (Tsinghua University), Dongqi Han (Tsinghua University), Wenqi Chen (Tsinghua University), Jiahai Yang (Tsinghua University), Xingang Shi (Tsinghua University), Xia Yin (Tsinghua University)

Read More