Sian Kim (Ewha Womans University), Changhun Jung (Ewha Womans University), RhongHo Jang (Wayne State University), David Mohaisen (University of Central Florida), DaeHun Nyang (Ewha Womans University)

Demands are increasing to measure per-flow statistics in the data plane of high-speed switches. However, the resource constraint of the data plane is the biggest challenge. Although existing in-data plane solutions improve memory efficiency by accommodating Zipfian distribution of network traffic, they cannot adapt to various flow size distributions due to their static data structure. In other words, they cannot provide robust flow measurement under complex traffic patterns (e.g. under attacks). Recent works suggest dynamic data structure management schemes, but the high complexity is the major obstruction for the data plane deployment. In this paper, we present Count-Less sketch that enables robust and accurate network measurement under a wide variety of traffic distributions without dynamic data structure update. Count-Less applies a novel sketch update strategy, called {em minimum update}, which approximates the conservative update strategy of Count-MIN for fitting into in-network switches. Not only theoretical proof on Count-Less's estimation but also comprehensive experimental results are presented in terms of estimation accuracy and throughput of Count-Less, compared to Count-Min (baseline), Elastic sketch, and FCM sketch. More specifically, experiment results on security applications including estimation errors under various skewness parameters are provided. Count-Less is much more accurate in all measurement tasks than Count-Min and outperforms FCM sketch and Elastic sketch, state-of-the-art algorithms without the help of any special hardware like TCAM. To prove its feasibility in the data plane of a high-speed switch, Count-Less prototype on an ASIC-based programmable switch (Tofino) is implemented in P4 language and evaluated. In terms of data plane latency, Count-Less is 1.53x faster than FCM, while consuming 1.56x less resources such as hash bits, SRAM, and ALU of a programmable switch.

View More Papers

Post-GDPR Threat Hunting on Android Phones: Dissecting OS-level Safeguards...

Mark Huasong Meng (National University of Singapore), Qing Zhang (ByteDance), Guangshuai Xia (ByteDance), Yuwei Zheng (ByteDance), Yanjun Zhang (The University of Queensland), Guangdong Bai (The University of Queensland), Zhi Liu (ByteDance), Sin G. Teo (Agency for Science, Technology and Research), Jin Song Dong (National University of Singapore)

Read More

GPS Spoofing Attack Detection on Intersection Movement Assist using...

Jun Ying (Purdue University), Yiheng Feng (Purdue University), Qi Alfred Chen (University of California, Irvine), Z. Morley Mao (University of Michigan)

Read More

Breaking and Fixing Virtual Channels: Domino Attack and Donner

Lukas Aumayr (TU Wien), Pedro Moreno-Sanchez (IMDEA Software Institute), Aniket Kate (Purdue University / Supra), Matteo Maffei (Christian Doppler Laboratory Blockchain Technologies for the Internet of Things / TU Wien)

Read More

Learning Automated Defense Strategies Using Graph-Based Cyber Attack Simulations

Jakob Nyber, Pontus Johnson (KTH Royal Institute of Technology)

Read More