Alexander Warnecke (TU Braunschweig), Lukas Pirch (TU Braunschweig), Christian Wressnegger (Karlsruhe Institute of Technology (KIT)), Konrad Rieck (TU Braunschweig)

Removing information from a machine learning model is a non-trivial task that requires to partially revert the training process. This task is unavoidable when sensitive data, such as credit card numbers or passwords, accidentally enter the model and need to be removed afterwards. Recently, different concepts for machine unlearning have been proposed to address this problem. While these approaches are effective in removing individual data points, they do not scale to scenarios where larger groups of features and labels need to be reverted. In this paper, we propose the first method for unlearning features and labels. Our approach builds on the concept of influence functions and realizes unlearning through closed-form updates of model parameters. It enables to adapt the influence of training data on a learning model retrospectively, thereby correcting data leaks and privacy issues. For learning models with strongly convex loss functions, our method provides certified unlearning with theoretical guarantees. For models with non-convex losses, we empirically show that unlearning features and labels is effective and significantly faster than other strategies.

View More Papers

SoundLock: A Novel User Authentication Scheme for VR Devices...

Huadi Zhu (The University of Texas at Arlington), Mingyan Xiao (The University of Texas at Arlington), Demoria Sherman (The University of Texas at Arlington), Ming Li (The University of Texas at Arlington)

Read More

The Power of Bamboo: On the Post-Compromise Security for...

Tianyang Chen (Huazhong University of Science and Technology), Peng Xu (Huazhong University of Science and Technology), Stjepan Picek (Radboud University), Bo Luo (The University of Kansas), Willy Susilo (University of Wollongong), Hai Jin (Huazhong University of Science and Technology), Kaitai Liang (TU Delft)

Read More

Assessing the Impact of Interface Vulnerabilities in Compartmentalized Software

Hugo Lefeuvre (The University of Manchester), Vlad-Andrei Bădoiu (University Politehnica of Bucharest), Yi Chen (Rice University), Felipe Huici (Unikraft.io), Nathan Dautenhahn (Rice University), Pierre Olivier (The University of Manchester)

Read More

On the Anonymity of Peer-To-Peer Network Anonymity Schemes Used...

Piyush Kumar Sharma (imec-COSIC, KU Leuven), Devashish Gosain (Max Planck Institute for Informatics), Claudia Diaz (Nym Technologies, SA and imec-COSIC, KU Leuven)

Read More